Analele Universității Oradea Fasc. Matematica, Tom XXV (2018), Issue No. 1, 73–88

FUZZY ALMOST s*-COMPACT SPACE

ANJANA BHATTACHARYYA

ABSTRACT. In this paper, we introduce and study fuzzy almost s-continuous and fuzzy almost s^* -continuous functions in fuzzy topological spaces. Afterwards, it is shown that any fuzzy almost s^* -continuous function is fuzzy almost s-continuous and the converse is true in fuzzy s^* -regular spaces. It is shown also that a fuzzy almost s^* -compact space is fuzzy almost compact [4] and the converse is true only in fuzzy s^* -regular spaces. Lastly, it is proved that fuzzy almost s^* -compactness remains invariant under fuzzy almost s^* -continuous functions.

1. INTRODUCTION AND PRELIMINARIES

After introducing the fuzzy open sets, many researchers are engaged themselves to introduce various types of continuous-like functions in a fuzzy topological space (fts, for short) in the sense of Chang [3]. The fuzzy semiopen set is introduced in [1] and using this concept as a basic tool in this paper we first introduce two new types of functions, viz., fuzzy almost *s*-continuous and fuzzy almost *s*^{*}-continuous functions. Then we introduce the fuzzy almost *s*^{*}-compact spaces (resp., sets) which are also fuzzy almost compact using fuzzy *s*^{*}-open set. A new type of fuzzy cover is introduced by which fuzzy almost *s*^{*}-compactness is characterized.

Throughout this paper, by (X, τ) or simply X we shall mean a fuzzy topological space. A fuzzy set A is a function from a non-empty set X into the closed interval I = [0, 1], i.e., $A \in I^X$. The support of a fuzzy set A, denoted by suppA or A_0 and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value t $(0 < t \leq 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of a fuzzy set A in a fts X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ while AqB means A is quasi-coincident (q-coincident, for short) with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1 ([7]). The negation of these two statements will be denoted by A $\not\leq B$ and A $\notq B$ respectively. For a fuzzy set A, by clA and intA we will denote the fuzzy closure and the fuzzy interior, respectively.

A fuzzy set A in a fts (X, τ) is called fuzzy regular open [1] (resp., fuzzy semiopen [1]) if A = intclA (resp., $A \leq cl(intA)$). The complement of a fuzzy semiopen set is called fuzzy semiclosed. The union (intersection) of all fuzzy semiopen (resp., fuzzy semiclosed) sets contained in (resp., containing) a fuzzy set A is called fuzzy semiinterior (resp., fuzzy semiclosure) of A, denoted by sintA (resp., sclA). A fuzzy set A in X is called a fuzzy neighbourhood (nbd, for short) [7] of a fuzzy point x_t if there exists a fuzzy open set G in X such that $x_t \in G \leq A$. If, in addition, A is fuzzy open (resp, fuzzy semiopen), then A

²⁰¹⁰ Mathematics Subject Classification. 54A40, 54C99, 54D20.

Key words and phrases. Fuzzy almost s-continuous function, fuzzy almost s^{*}-continuous function, fuzzy s^{*}-open q-nbd of a fuzzy point, fuzzy s^{*}-regular space, fuzzy almost s^{*}-compact space.